
《Casper: An Efficient Approach to Call Trace
Collection》Review

Paper Info

《Casper: An Efficient Approach to Call Trace Collection》 POPL 2016

Rongxin Wu, Xiao Xiao, Shing-Chi Cheung, Hongyu Zhang, Charles Zhang

Major Contributions

This work focuses on an interesting and meaningful problem: call trace collection. In many related fields,
including anomalous program behaviours detection, debugging, performance diagnosis and program
comprehension.

The conventional approach to collect call traces incurs large space and time overhead, so it can not be
applied to the real world code projects. In this paper, the authors propose a new approach aimed at
reducing the recording overhead by instrumenting only a small amount of call sites while keeping the
capability of recovering the full trace. This is the core insight of this work.

The main contributions of this paper include:

They propose an LL(1) grammar based framework to study the inference based call trace collection
problem. They prove that this problem is equivalent to the vertex cover problem, hence it is a NP-hard
problem.
They design an algorithm to construct the suboptimal solution of the call site instrument, and
implement a tool Casper that can collect full call trace in complex function-call enviroments.

The paper has both theoretically study value and practical use value. The way to solve this problem is
elegant and the proof is rigorous. However, the observation and the insight are natural, and it is easy to link
this problem with the property of LL(1) grammar. The application of this work is quite broad, including
performance diagnosis, debug assistance and so on.

Main Work

The author give a framework to reduce the time and space overhead in call trace collection. They observe
that some locations in the full call trace can be omitted, and they can infer the full call trace just based on
the partial or logged call traces. This is a smart observation. In this way, the total space can be compressed.
They can compress the set of full call traces into the set of partial call traces, and then decompress the later
into the former.

The author prove that the grammar to parse call trace model is LL(1) grammar. This is important. Then they
find a bijection between the grammar parsing full call trace model and the grammar parsing partial or
logged call trace model. This provide a theoretically base of their algorithm, in which they construct the
instrument of I supporting the convertion between these two grammars.

af://n0
af://n2
af://n5
af://n15

They prove that the construction of the optimal instrument is NP-hard, and try to find a suboptimal solution.
The details of algorithm involves some program struct and will not be discussed here. They implement the
tool Casper and perform some experiments.

To sum up, this work has the rigorous mathematical proofs, but also practical design of algorithms and the
tool. The results of the tool demonstrate the perfect performance of the tool and the efficient of their
approach. The approach in this paper is meaningful and useful in the future research on other field
including debug assistance, performance diagnosis and so on. Because of page limitation, the details of the
proofs and implementation are not summarized in this review.

Some Criticism and Future Work

Call trace collection is a powerful technique in many program analysis problems, but it suffers high space
and time overhead. This work makes an important step towards reducing the cost of collecting call traces.
The paper is the work of Rongxin Wu, my senior fellow apprentice in Tsinghua University. Although it is well-
written and has a meaningful impact on program analysis, it has several limitations. Some important
applications are also worth of deeper research.

In this paper, the author construct an LL(1) grammar to parse call trace model in order to reduce the
time and space overhead in the call trace collection. However, more time and space overhead can be
reduced if LL(k) grammar is used instead of LL(1) grammar. Because LL(k) grammar can omit more
unnecesseary information while keeping the call trace recovery available, it must perform better than
LL(1) grammar.
This work can apply to performance diagnosis. Based on the full call trace collected, we can analysis
the program locations in each trace. If the program locations in a specific code block or function occurs
in many call traces, we can focus on such a code block or function and try to optimize it. This can help
the developers improve the entire performance of the project.

af://n20

	《Casper: An Efficient Approach to Call Trace Collection》Review
	Paper Info
	Major Contributions
	Main Work
	Some Criticism and Future Work

